
11 Convex Hulls
Mixing Things

The output of oil wells is a mixture of several different components, and the

proportions of these components vary between different sources. This can

sometimes be exploited: by mixing together the output of different wells, one

can produce a mixture with proportions that are particularly favorable for the

refining process.

Let’s look at an example. For simplicity we assume that we are only

interested in two of the components—call them A and B—of our product.

Assume that we are given a mixture ξ1 with 10% of component A and 35% of

component B, and another mixture ξ2 with 16% of A and 20% of B. Assume

further that what we really need is a mixture that contains 12% of A and 30%

of B. Can we produce this mixture from the given ones? Yes, mixing ξ1 and ξ2

in the ratio 2 : 1 gives the desired product. However, it is impossible to make

a mixture of ξ1 and ξ2 that contains 13% of A and 22% of B. But if we have a

third mixture ξ3 containing 7% of A and 15% of B, then mixing ξ1, ξ2, and ξ3

in the ratio of 1 : 3 : 1 will give the desired result.
(0.1,0.35)

(0.16,0.2)

(0.07,0.15)

(0.12,0.3)

(0.13,0.22)

What has all this to do with geometry? This becomes clear when we

represent the mixtures ξ1, ξ2, and ξ3 by points in the plane, namely by p1 :=
(0.1,0.35), p2 := (0.16,0.2), and p3 := (0.07,0.15). Mixing ξ1 and ξ2 in the

ratio 2 : 1 gives the mixture represented by the point q := (2/3)p1 +(1/3)p2.

This is the point on the segment p1 p2 such that dist(p2,q) : dist(q, p1) = 2 : 1,

where dist(., .) denotes the distance between two points. More generally, by

mixing ξ1 and ξ2 in varying ratios, we can produce the mixtures represented

by any point on the line segment p1 p2. If we start with the three base mixtures

ξ1, ξ2, and ξ3, we can produce any point in the triangle p1 p2 p3. For instance,

mixing ξ1, ξ2, and ξ3 in the ratio 1 : 3 : 1 gives the mixture represented by the

point (1/5)p1 +(3/5)p2 +(1/5)p3 = (0.13,0.22).
What happens if we don’t have three but n base mixtures, for some n > 3,

represented by points p1, p2, . . . , pn? Suppose that we mix them in the ratio

l1 : l2 : · · · : ln. Let L := ∑n
j=1 l j and let λi := li/L. Note that

λi � 0 for all i and
n

∑
i=1

λi = 1.

The mixture we get by mixing the base mixtures in the given ratio is the one 243

Chapter 11
CONVEX HULLS

represented by
n

∑
i=1

λi pi.

Such a linear combination of the points pi where the λi satisfy the conditions

stated above—each λi is non-negative, and the sum of the λi is one—is called a

convex combination. In Chapter 1 we defined the convex hull of a set of points

as the smallest convex set containing the points or, more precisely, as the inter-

section of all convex sets containing the points. One can show that the convex

hull of a set of points is exactly the set of all possible convex combinations of

the points. We can therefore test whether a mixture can be obtained from the

base mixtures by computing the convex hull of their representative points, and

checking whether the point representing the mixture lies inside it.

What if there are more than two interesting components in the mixtures?

Well, what we have said above remains true; we just have to move to a space of

higher dimension. More precisely, if we want to take d components into account

we have to represent a mixture by a point in d-dimensional space. The convex

hull of the points representing the base mixtures, which is a convex polytope,

represents the set of all possible mixtures.

Convex hulls—in particular convex hulls in 3-dimensional space—are used in

various applications. For instance, they are used to speed up collision detection

in computer animation. Suppose that we want to check whether two objects P1

and P2 intersect. If the answer to this question is negative most of the time, then

the following strategy pays off. Approximate the objects by simpler objects

P̂1 and P̂2 that contain the originals. If we want to check whether P1 and P2

intersect, we first check whether P̂1 and P̂2 intersect; only if this is the case do

we need to perform the—supposedly more costly—test on the original objects.

There is a trade-off in the choice of the approximating objects. On the one

hand, we want them to be simple so that intersection tests are cheap. On the other

hand, simple approximations most likely do not approximate the original objects

very well, so there is a bigger chance we have to test the originals. Bounding

spheres are on one side of the spectrum: intersection tests for spheres are quite

simple, but for many objects spheres do not provide a good approximation.

Convex hulls are more on the other side of the spectrum: intersection tests for

convex hulls are more complicated than for spheres—but still simpler than for

non-convex objects—but convex hulls can approximate most objects a lot better.

11.1 The Complexity of Convex Hulls in 3-Space

In Chapter 1 we have seen that the convex hull of a set P of n points in the plane

is a convex polygon whose vertices are points in P. Hence, the convex hull

has at most n vertices. In 3-dimensional space a similar statement is true: the

convex hull of a set P of n points is a convex polytope whose vertices are points

in P and, hence, it has at most n vertices. In the planar case the bound on the

number of vertices immediately implies that the complexity of the convex hull244

Section 11.1
THE COMPLEXITY OF CONVEX HULLS

IN 3-SPACE

is linear, since the number of edges of a planar polygon is equal to the number

of vertices. In 3-space this is no longer true; the number of edges of a polytope

can be higher than the number of vertices. But fortunately the difference cannot

be too large, as follows from the following theorem on the number of edges and

facets of convex polytopes. (Formally, a facet of a convex polytope is defined

to be a maximal subset of coplanar points on its boundary. A facet of a convex

polytope is necessarily a convex polygon. An edge of a convex polytope is an

edge of one of its facets.)

facet

edge

vertex
Theorem 11.1 Let P be a convex polytope with n vertices. The number of

edges of P is at most 3n−6, and the number of facets of P is at most 2n−4.

Proof. Recall that Euler’s formula states for a connected planar graph with n
nodes, ne arcs, and n f faces the following relation holds:

n−ne +n f = 2.

Since we can interpret the boundary of a convex polytope as a planar graph—see

Figure 11.1—the same relation holds for the numbers of vertices, edges, and

facets in a convex polytope. (In fact, Euler’s formula was originally stated in

Figure 11.1
A cube interpreted as a planar graph:

note that one facet maps to the

unbounded face of the graph

terms of polytopes, not in terms of planar graphs.) Every face of the graph

corresponding to P has at least three arcs, and every arc is incident to two faces,

so we have 2ne � 3n f . Plugging this into Euler’s formula we get

n+n f −2 � 3n f /2,

so n f � 2n−4. Applying Euler’s formula once more, we see that ne � 3n−6.

For the special case that every facet is a triangle—the case of a simplicial
polytope—the bounds on the number of edges and facets of an n-vertex polytope

are exact, because then 2ne = 3n f .

Theorem 11.1 also holds for non-convex polytopes whose so-called genus
is zero, that is, polytopes without holes or tunnels; for polytopes of larger genus

similar bounds hold. Since this chapter deals with convex hulls, however, we

refrain from defining what a (non-convex) polytope exactly is, which we would

need to do to prove the theorem in the non-convex case. 245

Chapter 11
CONVEX HULLS

If we combine Theorem 11.1 with the earlier observation that the convex

hull of a set of points in 3-space is a convex polytope whose vertices are points

in P, we get the following result.

Corollary 11.2 The complexity of the convex hull of a set of n points in three-

dimensional space is O(n).

11.2 Computing Convex Hulls in 3-Space

Let P be a set of n points in 3-space. We will compute CH(P), the convex hull

of P, using a randomized incremental algorithm, following the paradigm we

have met before in Chapters 4, 6, and 9.

The incremental construction starts by choosing four points in P that do not lie

in a common plane, so that their convex hull is a tetrahedron. This can be done

as follows. Let p1 and p2 be two points in P. We walk through the set P until

we find a point p3 that does not lie on the line through p1 and p2. We continue

searching P until we find a point p4 that does not lie in the plane through p1, p2,

and p3. (If we cannot find four such points, then all points in P lie in a plane. In

this case we can use the planar convex hull algorithm of Chapter 1 to compute

the convex hull.)

Next we compute a random permutation p5, . . . , pn of the remaining points.

We will consider the points one by one in this random order, maintaining the

convex hull as we go. For an integer r � 1, let Pr := {p1, . . . , pr}. In a generic

step of the algorithm, we have to add the point pr to the convex hull of Pr−1,

that is, we have to transform CH(Pr−1) into CH(Pr). There are two cases.

If pr lies inside CH(Pr−1), or on its boundary, then CH(Pr) = CH(Pr−1),
and there is nothing to be done.

Figure 11.2
The horizon of a polytope

pr

horizon

Now suppose that pr lies outside CH(Pr−1). Imagine that you are standing

at pr, and that you are looking at CH(Pr−1). You will be able to see some246

Section 11.2
COMPUTING CONVEX HULLS IN

3-SPACE

facets of CH(Pr−1)—the ones on the front side—but others will be invisible

because they are on the back side. The visible facets form a connected region

on the surface of CH(Pr−1), called the visible region of pr on CH(Pr−1),
which is enclosed by a closed curve consisting of edges of CH(Pr−1). We

call this curve the horizon of pr on CH(Pr−1). As you can see in Figure 11.2,

the projection of the horizon is the boundary of the convex polygon obtained

f is visible from p,

but not from q

f

p

qh f

by projecting CH(Pr−1) onto a plane, with pr as the center of projection.

What exactly does “visible” mean geometrically? Consider the plane h f
containing a facet f of CH(Pr−1). By convexity, CH(Pr−1) is completely

contained in one of the closed half-spaces defined by h f . The face f is

visible from a point if that point lies in the open half-space on the other side

of h f .

The horizon of pr plays a crucial role when we want to transform CH(Pr−1)
to CH(Pr): it forms the border between the part of the boundary that can

be kept—the invisible facets—and the part of the boundary that must be

replaced—the visible facets. The visible facets must be replaced by facets

connecting pr to its horizon.

Before we go into more details, we should decide how we are going to represent

the convex hull of points in space. As we observed before, the boundary of a

3-dimensional convex polytope can be interpreted as a planar graph. Therefore

we store the convex hull in the form of a doubly-connected edge list, a data

structure developed in Chapter 2 for storing planar subdivisions. The only

difference is that vertices will now be 3-dimensional points. We will keep the

convention that the half-edges are directed such that the ones bounding any face

form a counterclockwise cycle when seen from the outside of the polytope.

pr

CH(Pr−1)

CH(Pr)

pr

Figure 11.3
Adding a point to the convex hull

Back to the addition of pr to the convex hull. We have a doubly-connected

edge list representing CH(Pr−1), which we have to transform into a doubly-

connected edge list for CH(Pr). Suppose that we knew all facets of CH(Pr−1)
visible from pr. Then it would be easy to remove all the information stored

for these facets from the doubly-connected edge list, compute the new facets

connecting pr to the horizon, and store the information for the new facets in the

doubly-connected edge list. All this will take linear time in the total complexity

of the facets that disappear.

There is one subtlety we should take care of after the addition of the new 247

Chapter 11
CONVEX HULLS

facets: we have to check whether we have created any coplanar facets. This

happens if pr lies in the plane of a face of CH(Pr−1). Such a face f is not visible

from pr by our definition of visibility above. Hence, f will remain unchanged,

prf

and we will add triangles connecting pr to the edges of f that are part of the

horizon. Those triangles are coplanar with f , and so they have to be merged

with f into one facet.

In the discussion so far we have ignored the problem of finding the facets of

CH(Pr−1) that are visible from pr. Of course this could be done by testing

every facet. Since such a test takes constant time—we have to check to which

side of a given plane the point pr lies—we can find all visible facets in O(r)
time. This would lead to an O(n2) algorithm. Next we show how to do better.

The trick is that we are going to work ahead: besides the convex hull of

the current point set we shall maintain some additional information, which will

make it easy to find the visible facets. In particular, we maintain for each facet

f of the current convex hull CH(Pr) a set Pconflict(f) ⊆ {pr+1, pr+2, . . . , pn}
containing the points that can see f . Conversely, we store for every point pt ,

with t > r, the set Fconflict(pt) of facets of CH(Pr) visible from pt . We will say

that a point p ∈ Pconflict(f) is in conflict with the facet f , because p and f cannot

peacefully live together in the convex hull—once we add a point p ∈ Pconflict(f)
to the convex hull, the facet f must go. We call Pconflict(f) and Fconflict(pt)
conflict lists.

points facets

conflicts

Fconflict(pt)

Pconflict(f)

pt

f

We maintain the conflicts in a so-called conflict graph, which we denote

by G. The conflict graph is a bipartite graph. It has one node set with a node for

every point of P that has not been inserted yet, and one node set with a node

for every facet of the current convex hull. There is an arc for every conflict

between a point and a facet. In other words, there is an arc between a point

pt ∈ P and facet f of CH(Pr) if r < t and f is visible from pt . Using the conflict

graph G, we can report the set Fconflict(pt) for a given point pt (or Pconflict(f) for

a given facet f) in time linear in its size. This means that when we insert pr
into CH(Pr−1), all we have to do is to look up Fconflict(pr) in G to get the visible

facets, which we can then replace by the new convex hull facets connecting pr
to the horizon.

Initializing the conflict graph G for CH(P4) can be done in linear time: we

simply walk through the list of points P and determine which of the four faces

of CH(P4) they can see.

To update G after adding a point pr, we first discard the nodes and incident

arcs for all the facets of CH(Pr−1) that disappear from the convex hull. These

are the facets visible from pr, which are exactly the neighbors of pr in G, so

this is easy. We also discard the node for pr. We then add nodes to G for the

new facets we created, which connect pr to the horizon. The essential step is to

find the conflict lists of these new facets. No other conflicts have to be updated:

the conflict set Pconflict(f) of a facet f that is unaffected by the insertion of pr
remains unchanged.

The facets created by the insertion of pr are all triangles, except for those

that have been merged with existing coplanar facets. The conflict list of a facet248

Section 11.2
COMPUTING CONVEX HULLS IN

3-SPACE

of the latter type is trivial to find: it is the same as the conflict list of the existing

facet, since the merging does not change the plane containing the facet. So let’s

look at one of the new triangles f incident to pr in CH(Pr). Suppose that a point

pt can see f . Then pt can certainly see the edge e of f that is opposite pr. This

edge e is a horizon edge of pr, and it was already present in CH(Pr−1). Since

CH(Pr−1) ⊂ CH(Pr), the edge e must have been visible from pt in CH(Pr−1)
as well. That can only be the case if one of the two facets incident to e in

CH(Pr−1) is visible from pt . This implies that the conflict list of f can be found

by testing the points in the conflict lists of the two facets f1 and f2 that were

incident to the horizon edge e in CH(Pr−1).

e

pr

f
f1

f2

We stated earlier that we store the convex hull as a doubly-connected edge list,

so changing the convex hull means changing the information in the doubly-

connected edge list. To keep the code short, however, we have omitted all

explicit references to the doubly-connected edge list in the pseudocode below,

which summarizes the convex hull algorithm.

Algorithm CONVEXHULL(P)

Input. A set P of n points in three-space.

Output. The convex hull CH(P) of P.

1. Find four points p1, p2, p3, p4 in P that form a tetrahedron.

2. C ← CH({p1, p2, p3, p4})
3. Compute a random permutation p5, p6, . . . , pn of the remaining points.

4. Initialize the conflict graph G with all visible pairs (pt , f), where f is a

facet of C and t > 4.

5. for r ← 5 to n
6. do (∗ Insert pr into C: ∗)

7. if Fconflict(pr) is not empty (∗ that is, pr lies outside C ∗)

8. then Delete all facets in Fconflict(pr) from C.

9. Walk along the boundary of the visible region of pr (which

consists exactly of the facets in Fconflict(pr)) and create a list

L of horizon edges in order.

10. for all e ∈ L

11. do Connect e to pr by creating a triangular facet f .

12. if f is coplanar with its neighbor facet f ′ along e
13. then Merge f and f ′ into one facet, whose conflict

list is the same as that of f ′.
14. else (∗ Determine conflicts for f : ∗)

15. Create a node for f in G.

16. Let f1 and f2 be the facets incident to e in the

old convex hull.

17. P(e) ← Pconflict(f1)∪Pconflict(f2)
18. for all points p ∈ P(e)
19. do If f is visible from p, add (p, f) to G.

20. Delete the node corresponding to pr and the nodes corre-

sponding to the facets in Fconflict(pr) from G, together with

their incident arcs.

21. return C

249

Chapter 11
CONVEX HULLS

11.3* The Analysis

As usual when we analyse a randomized incremental algorithm, we first try to

bound the expected structural change. For the convex hull algorithm this means

we want to bound the total number of facets created by the algorithm.

Lemma 11.3 The expected number of facets created by CONVEXHULL is at

most 6n−20.

Proof. The algorithm starts with a tetrahedron, which has four facets. In every

stage r of the algorithm where pr lies outside CH(Pr−1), new triangular facets

connecting pr to its horizon on CH(Pr−1) are created. What is the expected

number of new facets? As in previous occasions where we analyzed randomized

algorithms, we use backwards analysis. We look at CH(Pr) and imagine remov-

ing vertex pr; the number of facets that disappear due to the removal of pr from

CH(Pr) is the same as the number of facets that were created due to the insertion

of pr into CH(Pr−1). The disappearing facets are exactly the ones incident to pr,

and their number equals the number of edges incident to pr in CH(Pr). We call

this number the degree of pr in CH(Pr), and we denote it by deg(pr,CH(Pr)).
We now want to bound the expected value of deg(pr,CH(Pr)).

By Theorem 11.1 a convex polytope with r vertices has at most 3r−6 edges.

This means that the sum of the degrees of the vertices of CH(Pr), which is a

convex polytope with r or less vertices, is at most 6r−12. Hence, the average

degree is bounded by 6− 12/r. Since we treat the vertices in random order,

it seems that the expected degree of pr is bounded by 6− 12/r. We have to

be a little bit careful, though: the first four points are already fixed when we

generate the random permutation, so pr is a random element of {p5, . . . , pr},

not of Pr. Because p1, . . . , p4 have total degree at least 12, the expected value of

deg(pr,CH(Pr)) is bounded as follows:

E[deg(pr,CH(Pr))] =
1

r−4

r

∑
i=5

deg(pi,CH(Pr))

� 1

r−4

({ r

∑
i=1

deg(pi,CH(Pr))
}
−12

)

� 6r−12−12

r−4
= 6.

The expected number of facets created by CONVEXHULL is the number of

facets we start with (four) plus the expected total number of facets created

during the additions of p5, . . . , pn to the hull. Hence, the expected number of

created facets is

4+
n

∑
r=5

E[deg(pr,CH(Pr))] � 4+6(n−4) = 6n−20.

Now that we have bounded the total amount of structural change we can

bound the expected running time of the algorithm.250

Section 11.3*
THE ANALYSIS

Lemma 11.4 Algorithm CONVEXHULL computes the convex hull of a set P of

n points in R
3 in O(n logn) expected time, where the expectation is with respect

to the random permutation used by the algorithm.

Proof. The steps before the main loop can certainly be done in O(n logn) time.

Stage r of the algorithm takes constant time if Fconflict(pr) is empty, which is

when pr lies inside, or on the boundary of, the current convex hull.

If that is not the case, most of stage r takes O(card(Fconflict(pr))) time,

where card() denotes the cardinality of a set. The exceptions to this are the

lines 17–19 and line 20. We shall bound the time spent in these lines later;

first, we bound card(Fconflict(pr)). Note that card(Fconflict(pr)) is the number of

facets deleted due to the addition of the point pr. Clearly, a facet can only be

deleted if it has been created before, and it is deleted at most once. Since the

expected number of facets created by the algorithm is O(n) by Lemma 11.3,

this implies that the total number of deletions is O(n) as well, so

E[
n

∑
r=5

card(Fconflict(pr))] = O(n).

Now for lines 17–19 and line 20. Line 20 takes time linear in the number

of nodes and arcs that are deleted from G. Again, a node or arc is deleted at

most once, and we can charge the cost of this deletion to the stage where we

created it. It remains to look at lines 17–19. In stage r, these lines are executed

for all horizon edges, that is, all edges in L. For one edge e ∈ L, they take

O(card(P(e))) time. Hence, the total time spent in these lines in stage r is

O(∑e∈L card(P(e))). To bound the total expected running time, we therefore

have to bound the expected value of

∑
e

card(P(e)),

where the summation is over all horizon edges that appear at any stage of the

algorithm. We will prove below that this is O(n logn), which implies that the

total running time is O(n logn).

We use the framework of configuration spaces from Chapter 9 to supply

the missing bound. The universe X is the set of P, and the configurations ∆
correspond to convex hull edges. However, for technical reasons—in particular,

to be able to deal correctly with degenerate cases—we attach a half-edge to

both sides of the edge. To be more precise, a flap ∆ is defined as an ordered

four-tuple of points (p,q,s, t) that do not all lie in a plane. The defining set D(∆)
is simply the set {p,q,s, t}. The killing set K(∆) is more difficult to visualize.

Denote the line through p and q by �. Given a point x, let h(�,x) denote the

half-plane bounded by � that contains x. Given two points x, y, let ρ(x,y) be the

half-line starting in x and passing through y. A point x ∈ X is in K(∆) if and

only if it lies in one of the following regions:

p

q

s

t

h(�,s) ρ(p,s)

�

ρ(q, t) h(�, t)

outside the closed convex 3-dimensional wedge defined by h(�,s) and h(�, t),
inside h(�,s) but outside the closed 2-dimensional wedge defined by ρ(p,q)
and ρ(p,s), 251

Chapter 11
CONVEX HULLS

inside h(�, t) but outside the closed 2-dimensional wedge defined by ρ(q, t)
and ρ(q, p),
inside the line � but outside the segment pq,

inside the half-line ρ(p,s) but outside the segment ps,

inside the half-line ρ(q, t) but outside the segment qt.
For every subset S ⊆ P, we define the set T(S) of active configurations—this is

what we want to compute—as prescribed in Chapter 9: ∆ ∈ T(S) if and only if

D(∆) ⊆ S and K(∆)∩S = /0.

Lemma 11.5 A flap ∆ = (p,q,s, t) is in T(S) if and only if pq, ps, and qt are

edges of the convex hull CH(S), there is a facet f1 incident to pq and ps, and a

different facet f2 incident to pq and qt. Furthermore, if one of the facets f1 or

f2 is visible from a point x ∈ P then x ∈ K(∆).

We leave the proof—which involves looking precisely at the cases when

points are collinear or coplanar, but which is otherwise not difficult—to the

reader.

As you may have guessed, the flaps take over the role of the horizon edges.

Lemma 11.6 The expected value of ∑e card(P(e)), where the summation is

over all horizon edges that appear at some stage of the algorithm, is O(n logn).

Proof. Consider an edge e of the horizon of pr on CH(Pr−1). Let ∆ = (p,q,s, t)
be one of the two flaps with pq = e. By Lemma 11.5, ∆ ∈ T(Pr−1), and the

points in P\Pr that can see one of the facets incident to e are all in K(∆), so

P(e) ⊆ K(∆). By Theorem 9.15, it follows that the expected value of

∑
∆

card(K(∆)),

where the summation is over all flaps ∆ appearing in at least one T(Pr), is

bounded by
n

∑
r=1

16

(
n− r

r

)(
E
[
card(T(Pr))

]
r

)
.

The cardinality of T(Pr) is twice the number of edges of CH(Pr). Therefore it

is at most 6r−12, so we get the bound

∑
e

card(P(e)) � ∑
∆

card(K(∆)) �
n

∑
r=1

16

(
n− r

r

)(
6r−12

r

)
� 96n lnn.

This finishes the last piece of the analysis of the convex hull algorithm. We

get the following result:

Theorem 11.7 The convex hull of a set of n points in R
3 can be computed in

O(n logn) randomized expected time.252

Section 11.4*
CONVEX HULLS AND HALF-SPACE

INTERSECTION

11.4* Convex Hulls and Half-Space Intersection

In Chapter 8 we have met the concept of duality. The strenth of duality lies in

that it allows us to look at a problem from a new perspective, which can lead to

more insight in what is really going on. Recall that we denote the line that is

the dual of a point p by p∗, and the point that is the dual of a line � by �∗. The

duality transform is incidence and order preserving: p ∈ � if and only if �∗ ∈ p∗,

and p lies above � if and only if �∗ lies above p∗.

Let’s have a closer look at what convex hulls correspond to in dual space.

We will do this for the planar case. Let P be a set of points in the plane. For

technical reasons we focus on its upper convex hull, denoted UH(P), which

consists of the convex hull edges that have P below their supporting line—see

the left side of Figure 11.4. The upper convex hull is a polygonal chain that

connects the leftmost point in P to the rightmost one. (We assume for simplicity

that no two points have the same x-coordinate.)

primal plane dual plane

UH(P)

LE(P∗)
Figure 11.4
Upper hulls correspond to lower

envelopes

When does a point p ∈ P appear as a vertex of the upper convex hull? That

is the case if and only if there is a non-vertical line � through p such that all

other points of P lie below �. In the dual plane this statement translates to the

following condition: there is a point �∗ on the line p∗ ∈ P∗ such that �∗ lies

below all other lines of P∗. If we look at the arrangement A(P∗), this means that

p∗ contributes an edge to the unique bottom cell of the arrangement. This cell is

the intersection of the half-planes bounded by a line in P∗ and lying below that

line. The boundary of the bottom cell is an x-monotone chain. We can define

this chain as the minimum of the linear functions whose graphs are the lines in

P∗. For this reason, the boundary of the bottom cell in an arrangement is often

called the lower envelope of the set of lines. We denote the lower envelope of

P∗ by LE(P∗)—see the right hand side of Figure 11.4.

The points in P that appear on UH(P) do so in order of increasing x-

coordinate. The lines of P∗ appear on the boundary of the bottom cell in order

of decreasing slope. Since the slope of the line p∗ is equal to the x-coordinate of

p, it follows that the left-to-right list of points on UH(P) corresponds exactly

to the right-to-left list of edges of LE(P∗). So the upper convex hull of a set of

points is essentially the same as the lower envelope of a set of lines.

Let’s do one final check. Two points p and q in P form an upper convex 253

Chapter 11
CONVEX HULLS

hull edge if and only if all other points in P lie below the line � through p and

q. In the dual plane, this means that all lines r∗, with r ∈ P\{p,q}, lie above

the intersection point �∗ of p∗ and q∗. This is exactly the condition under which

p∗ ∩q∗ is a vertex of LE(P∗).
What about the lower convex hull of P and the upper envelope of P∗? (We

leave the precise definitions to the reader.) By symmetry, these concepts are

dual to each other as well.

We now know that the intersection of lower half-planes—half-planes bounded

from above by a non-vertical line—can be computed by computing an upper

convex hull, and that the intersection of upper half-planes can be computed by

computing a lower convex hull. But what if we want to compute the intersection

of an arbitrary set H of half-planes? Of course, we can split the set H into a

set H+ of upper half-planes and a set H− of lower half-planes, compute
⋃

H+
by computing the lower convex hull of H+

∗ and
⋃

H− by computing the upper

convex hull of H−∗, and then compute
⋂

H by intersecting
⋃

H+ and
⋃

H−.

But is this really necessary? If lower envelopes correspond to upper convex

hulls, and upper envelopes correspond to lower convex hulls, shouldn’t then

the intersection of arbitrary half-planes correspond to full convex hulls? In a

sense, this is true. The problem is that our duality transformation cannot handle

vertical lines, and lines that are close to vertical but have opposite slope are

mapped to very different points. This explains why the dual of the convex hull

consists of two parts that lie rather far apart.

It is possible to define a different duality transformation that allows vertical

lines. However, to apply this duality to a given set of half-planes, we need a

point in the intersection of the half-planes. But that was to be expected. As long

as we do not want to leave the Euclidean plane, there cannot be any general

duality that turns the intersection of a set of half-planes into a convex hull,

because the intersection of half-planes can have one special property: it can be

empty. What could that possibly correspond to in the dual? The convex hull

of a set of points in Euclidean space is always well defined: there is no such

thing as “emptiness.” (This problem is nicely solved if one works in oriented

projective space, but this concept is beyond the scope of this book.) Only once

you know that the intersection is not empty, and a point in the interior is known,

can you define a duality that relates the intersection with a convex hull.

We leave it at this for now. The important thing is that—although there are

technical complications—convex hulls and intersections of half-planes (or half-

spaces in three dimensions) are essentially dual concepts. Hence, an algorithm

to compute the intersection of half-planes in the plane (or half-spaces in three

dimensions) can be given by dualizing a convex-hull algorithm.

11.5* Voronoi Diagrams Revisited

In Chapter 7 we introduced the Voronoi diagram of a set of points in the plane. It

may come as a surprise that there is a close relationship between planar Voronoi254

Section 11.5*
VORONOI DIAGRAMS REVISITED

diagrams and the intersection of upper half-spaces in 3-dimensional space. By

the result on duality of the previous section, this implies a close relation between

planar Voronoi diagrams and lower convex hulls in 3-space.

This has to do with an amazing property of the unit paraboloid in 3-space.

Let U := (z = x2 + y2) denote the unit paraboloid, and let p := (px, py,0) be

a point in the plane z = 0. Consider the vertical line through p. It intersects

U in the point p′ := (px, py, p2
x + p2

y). Let h(p) be the non-vertical plane z =
2pxx+2pyy− (p2

x + p2
y). Notice that h(p) contains the point p′. Now consider

any other point q := (qx,qy,0) in the plane z = 0. The vertical line through q
intersects U in the point q′ := (qx,qy,q2

x +q2
y), and it intersects h(p) in

p

p′

h(p)

U

q

q(p)

q′⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩dist(p,q)2

q(p) := (qx,qy,2pxqx +2pyqy − (p2
x + p2

y)).

The vertical distance between q′ and q(p) is

q2
x +q2

y −2pxqx −2pyqy + p2
x + p2

y = (qx − px)2 +(qy − py)2 = dist(p,q)2.

Hence, the plane h(p) encodes—together with the unit paraboloid—the distance

between p and any other point in the plane z = 0. (Since dist(p,q)2 � 0 for

any point q, and p′ ∈ h(p), this also implies that h(p) is the tangent plane to U

at p′.)
The fact that the plane h(p) encodes the distance of other points to p leads to

a correspondence between Voronoi diagrams and upper envelopes, as explained

next. Let P be a planar point set, which we imagine to lie in the plane z = 0 of

3-dimensional space. Consider the set H := {h(p) | p ∈ P} of planes, and let

UE(H) be the upper envelope of the planes in H. We claim that the projection

of UE(H) on the plane z = 0 is the Voronoi diagram of P. Figure 11.5 illustrates

this one dimension lower: the Voronoi diagram of the points pi on the line y = 0

is the projection of the upper envelope of the lines h(pi).

Theorem 11.8 Let P be a set of points in 3-dimensional space, all lying in the

plane z = 0. Let H be the set of planes h(p), for p ∈ P, defined as above. Then

the projection of UE(H) on the plane z = 0 is the Voronoi diagram of P.

Proof. To prove the theorem, we will show that the Voronoi cell of a point

p ∈ P is exactly the projection of the facet of UE(H) that lies on the plane h(p).
Let q be a point in the plane z = 0 lying in the Voronoi cell of p. Hence, we

have dist(q, p) < dist(q,r) for all r ∈ P with r �= p. We have to prove that the

vertical line through q intersects UE(H) at a point lying on h(p). Recall that for

a point r ∈ P, the plane h(r) is intersected by the vertical line through q at the

point q(r) := (qx,qy,q2
x + q2

y −dist(q,r)2). Of all points in P, the point p has

the smallest distance to q, so q(p) is the highest intersection point. Hence, the

vertical line through q intersects UE(H) at a point lying on h(p), as claimed.

This theorem implies that we can compute a Voronoi diagram in the plane by

computing the upper envelope of a set of planes in 3-space. By Exercise 11.10

(see also the previous section), the upper envelope of a set of planes in 3-space

is in one-to-one correspondence to the lower convex hull of the points H∗, so

we can immediately use our algorithm CONVEXHULL. 255

Chapter 11
CONVEX HULLS

Figure 11.5
The correspondence between Voronoi

diagrams and upper envelopes h(p2)

U

p3p1

h(p3) h(p1)

y = 0

Voronoi cell of p3

Voronoi cell of p1

Voronoi cell of p2

p2

Not surprisingly, the lower convex hull of H∗ has a geometric meaning as

well: its projection on the plane z = 0 is the Delaunay graph of P.

11.6 Notes and Comments

The early convex hull algorithms worked only for points in the plane—see

the notes and comments of Chapter 1 for a discussion of these algorithms.

Computing convex hulls in 3-dimensional space turns out to be considerably

more difficult. One of the first algorithms was the “gift wrapping” algorithm

due to Chand and Kapur [84]. It finds facet after facet by “rotating” a plane

over known edges of the hull until the first point is found. The running time is

O(n f) for a convex hull with f facets, which is O(n2) in the worst case. The

first algorithm to achieve O(n logn) running time was a divide-and-conquer

algorithm by Preparata and Hong [322, 323]. Early incremental algorithms run

in time O(n2) [223, 344]. The randomized version presented here is due to

Clarkson and Shor [133]. The version we presented needs O(n logn) space; the

original paper gives a simple improvement to linear space. The idea of a conflict

graph, used here for the first time in this book, also comes from the paper of

Clarkson and Shor. Our analysis, however, is due to Mulmuley [290].

In this chapter we have concentrated on 3-dimensional space, where convex

hulls have linear complexity. The so-called Upper Bound Theorem states that

the worst-case combinatorial complexity of the convex hull of n points in d-

dimensional space—phrased in dual space: the intersection of n half-spaces—is

Θ(n�d/2
). (We proved this result for the case d = 3, using Euler’s relation.)

The algorithm described in this chapter generalizes to higher dimensions, and is

optimal in the worst case: its expected running time is Θ(n�d/2
). Interestingly,

the best known deterministic convex hull algorithm for odd-dimensional spaces

is based on a (quite complicated) derandomization of this algorithm [97]. Since

the convex hull in dimensions greater than three can have non-linear complexity,256

Section 11.7
EXERCISES

output-sensitive algorithms may be useful. The best known output-sensitive

algorithm for computing convex hulls in R
d is due to Chan [82]. Its running

time is O(n logk +(nk)1−1/(�d/2
+1) logO(1) n), where k denotes the complexity

of the convex hull. A good overview of the many results on convex-hull

computations is given in the survey by Seidel [347]. Readers who want to know

more about the mathematical aspects of polytopes in higher dimensions can

consult Grünbaum’s book [194], which is a classical reference for polytope

theory, or Ziegler’s book [399], which treats the combinatorial aspects.

In Section 11.5 we have seen that the Voronoi diagram of a planar point set is

the projection of the upper envelope of a certain set of planes in 3-dimensional

space. A similar statement is true in higher dimensions: the Voronoi diagram

of a set of points in R
d is the projection of the upper envelope of a certain set

of hyperplanes in R
d+1. Not all sets of (hyper)planes define an upper envelope

whose projection is the Voronoi diagram of some point set. Interestingly, any

upper envelope does project onto a so-called power diagram, a generalization of

the Voronoi diagram where the sites are spheres rather than points [25].

11.7 Exercises

11.1 In Chapter 1 we defined the convex hull of a set P of points as the

intersection of all convex sets containing the points. In the current

chapter we saw another definition: the convex hull of P is the set of all

convex combinations of the points in P. Prove that these two definitions

are equivalent, that is, prove that a point q is a convex combination of

points in P if and only if q lies in every convex set containing P.

11.2 Prove that the worst case running time of algorithm CONVEXHULL is

O(n3), and that there are sets of points where a bad choice of the random

permutation makes the algorithm actually need Θ(n3) time.

11.3 Describe a randomized incremental algorithm to compute the convex

hull of n points in the plane. Describe how to deal with degeneracies.

Analyze the expected running time of your algorithm.

11.4 In many applications, only a small percentage of the points in a given set

P of n points are extreme. In such a case, the convex hull of P has less

than n vertices. This can actually make our algorithm CONVEXHULL

run faster than Θ(n logn).

Assume, for instance, that the expected number of extreme points in a

random sample of P of size r is O(rα), for some constant α < 1. (This

is true when the set P has been created by picking points uniformly at

random in a ball.) Prove that under this condition, the running time of

the algorithm is O(n).

11.5 The convex hull of a set P of n points in 3-dimensional space can also

be computed by ”rotating” a plane over known edges of the convex 257

Chapter 11
CONVEX HULLS

hull, thereby discovering new facets. Give a detailed description of an

algorithm using this approach, and analyze its running time.

11.6 Describe a data structure that allows you to test whether a query point

q lies inside a convex polytope with n vertices in R
3. (Hint: Use the

results from Chapter 6.)

11.7 Define a simple polytope to be a region in 3-space that is topologically

equivalent to a ball (but not necessarily convex) and whose boundary

consists of planar polygons. Describe how to test in O(n) time whether

a point lies inside a simple polytope with n vertices in 3-dimensional

space.

11.8 Describe a randomized incremental algorithm to compute the intersec-

tion of half-planes, and analyze its expected running time. Your algo-

rithm should maintain the intersection of the current set of half-planes.

To figure out where to insert a new half-plane, maintain a conflict graph

between the vertices of the current intersection and the half-planes that

are still to be inserted.

11.9 Describe a randomized incremental algorithm to compute the intersec-

tion of half-spaces in 3-dimensional space, and analyze its expected

running time. Maintain a conflict graph analogous to the previous exer-

cise.

11.10 In this exercise you have to work out the details of a 3-dimensional

duality transformation. Given a point p := (px, py, pz) in R
3, let p∗ be

the plane z = pxx+ pyy− pz. For a non-vertical plane h, define h∗ such

that (h∗)∗ = h. Give a definition of the upper convex hull UH(P) of

a set of points P and the lower envelope LE(H) of a set H of planes

in 3-space, similar to the way they were defined for the planar case in

Section 11.4.

Show the following properties.

A point p lies on a plane h if and only if h∗ lies on p∗.

A point p lies above h if and only if h∗ lies above p∗.

A point p ∈ P is a vertex of UH(P) if and only if p∗ appears on

LE(P∗).
A segment pq is an edge of UH(P) if and only if p∗ and q∗ share an

edge on LE(P∗).
Points p1, p2, . . . , pk are the vertices of a facet f of UH(P) if and

only if p1
∗, p2

∗, . . . , pk
∗ support facets of LE(P∗) that share a com-

mon vertex.

258

