
7 Voronoi Diagrams
The Post Office Problem

Suppose you are on the advisory board for the planning of a supermarket chain,

and there are plans to open a new branch at a certain location. To predict whether

the new branch will be profitable, you must estimate the number of customers it

will attract. For this you have to model the behavior of your potential customers:

how do people decide where to do their shopping? A similar question arises in

social geography, when studying the economic activities in a country: what is

the trading area of certain cities? In a more abstract setting we have a set of

Figure 7.1
The trading areas of the capitals of the

twelve provinces in the Netherlands, as

predicted by the Voronoi assignment

model

central places—called sites—that provide certain goods or services, and we want

to know for each site where the people live who obtain their goods or services

from that site. (In computational geometry the sites are traditionally viewed

as post offices where customers want to post their letters—hence the subtitle

of this chapter.) To study this question we make the following simplifying

assumptions:

the price of a particular good or service is the same at every site;

the cost of acquiring the good or service is equal to the price plus the cost

of transportation to the site; 147

Chapter 7
VORONOI DIAGRAMS

the cost of transportation to a site equals the Euclidean distance to the site

times a fixed price per unit distance;

consumers try to minimize the cost of acquiring the good or service.

Usually these assumptions are not completely satisfied: goods may be cheaper

at some sites than at others, and the transportation cost between two points is

probably not linear in the Euclidean distance between them. But the model

above can give a rough approximation of the trading areas of the sites. Areas

where the behavior of the people differs from that predicted by the model can

be subjected to further research, to see what caused the different behavior.

Our interest lies in the geometric interpretation of the model above. The assump-

tions in the model induce a subdivision of the total area under consideration

into regions—the trading areas of the sites—such that the people who live in the

same region all go to the same site. Our assumptions imply that people simply

get their goods at the nearest site—a fairly realistic situation. This means that

the trading area for a given site consists of all those points for which that site is

closer than any other site. Figure 7.1 gives an example. The sites in this figure

are the capitals of the twelve provinces in the Netherlands.

The model where every point is assigned to the nearest site is called the

Voronoi assignment model. The subdivision induced by this model is called the

Voronoi diagram of the set of sites. From the Voronoi diagram we can derive

all kinds of information about the trading areas of the sites and their relations.

For example, if the regions of two sites have a common boundary then these

two sites are likely to be in direct competition for customers that live in the

boundary region.

The Voronoi diagram is a versatile geometric structure. We have described

an application to social geography, but the Voronoi diagram has applications

in physics, astronomy, robotics, and many more fields. It is also closely linked

to another important geometric structure, the so-called Delaunay triangulation,

which we shall encounter in Chapter 9. In the current chapter we shall confine

ourselves to the basic properties and the construction of the Voronoi diagram of

a set of point sites in the plane.

7.1 Definition and Basic Properties

Denote the Euclidean distance between two points p and q by dist(p,q). In the

plane we have

dist(p,q) :=
√

(px −qx)2 +(py −qy)2.

Let P := {p1, p2, . . . , pn} be a set of n distinct points in the plane; these points

are the sites. We define the Voronoi diagram of P as the subdivision of the plane

into n cells, one for each site in P, with the property that a point q lies in the

cell corresponding to a site pi if and only if dist(q, pi) < dist(q, p j) for each

p j ∈ P with j �= i. We denote the Voronoi diagram of P by Vor(P). Abusing the

terminology slightly, we will sometimes use ‘Vor(P)’ or ‘Voronoi diagram’ to

indicate only the edges and vertices of the subdivision. For example, when we148

Section 7.1
DEFINITION AND BASIC PROPERTIES

say that a Voronoi diagram is connected we mean that the union of its edges and

vertices forms a connected set. The cell of Vor(P) that corresponds to a site pi
is denoted V(pi); we call it the Voronoi cell of pi. (In the terminology of the

introduction to this chapter: V(pi) is the trading area of site pi.)

We now take a closer look at the Voronoi diagram. First we study the

structure of a single Voronoi cell. For two points p and q in the plane we define

the bisector of p and q as the perpendicular bisector of the line segment pq. This

bisector splits the plane into two half-planes. We denote the open half-plane

that contains p by h(p,q) and the open half-plane that contains q by h(q, p).
Notice that r ∈ h(p,q) if and only if dist(r, p) < dist(r,q). From this we obtain

the following observation.

Observation 7.1 V(pi) =
⋂

1� j�n, j �=i h(pi, p j).

Thus V(pi) is the intersection of n−1 half-planes and, hence, a (possibly

unbounded) open convex polygonal region bounded by at most n−1 vertices

and at most n−1 edges.

What does the complete Voronoi diagram look like? We just saw that each

cell of the diagram is the intersection of a number of half-planes, so the Voronoi

diagram is a planar subdivision whose edges are straight. Some edges are line

segments and others are half-lines. Unless all sites are collinear there will be no

edges that are full lines:

Theorem 7.2 Let P be a set of n point sites in the plane. If all the sites are

collinear then Vor(P) consists of n− 1 parallel lines. Otherwise, Vor(P) is

connected and its edges are either segments or half-lines.

Proof. The first part of the theorem is easy to prove, so assume that not all sites

in P are collinear.

We first show that the edges of Vor(P) are either segments or half-lines. We

already know that the edges of Vor(P) are parts of straight lines, namely parts of

the bisectors between pairs of sites. Now suppose for a contradiction that there

is an edge e of Vor(P) that is a full line. Let e be on the boundary of the Voronoi

cells V(pi) and V(p j). Let pk ∈ P be a point that is not collinear with pi and p j.

The bisector of p j and pk is not parallel to e and, hence, it intersects e. But then

pi p j

pke

the part of e that lies in the interior of h(pk, p j) cannot be on the boundary of

V(p j), because it is closer to pk than to p j, a contradiction.

It remains to prove that Vor(P) is connected. If this were not the case

then there would be a Voronoi cell V(pi) splitting the plane into two. Because

Voronoi cells are convex, V(pi) would consist of a strip bounded by two parallel

full lines. But we just proved that the edges of the Voronoi diagram cannot be

full lines, a contradiction.

Now that we understand the structure of the Voronoi diagram we investigate

its complexity, that is, the total number of its vertices and edges. Since there are

n sites and each Voronoi cell has at most n−1 vertices and edges, the complexity

of Vor(P) is at most quadratic. It is not clear, however, whether Vor(P) can

actually have quadratic complexity: it is easy to construct an example where

a single Voronoi cell has linear complexity, but can it happen that many cells 149

Chapter 7
VORONOI DIAGRAMS

have linear complexity? The following theorem shows that this is not the case

and that the average number of vertices of the Voronoi cells is less than six.

Theorem 7.3 For n � 3, the number of vertices in the Voronoi diagram of a set

of n point sites in the plane is at most 2n−5 and the number of edges is at most

3n−6.

Proof. If the sites are all collinear then the theorem immediately follows from

Theorem 7.2, so assume this is not the case. We prove the theorem using Euler’s
formula, which states that for any connected planar embedded graph with mv
nodes, me arcs, and m f faces the following relation holds:

mv −me +m f = 2.

We cannot apply Euler’s formula directly to Vor(P), because Vor(P) has half-

v∞
infinite edges and is therefore not a proper graph. To remedy the situation we

add one extra vertex v∞ “at infinity” to the set of vertices and we connect all

half-infinite edges of Vor(P) to this vertex. We now have a connected planar

graph to which we can apply Euler’s formula. We obtain the following relation

between nv, the number of vertices of Vor(P), ne, the number of edges of Vor(P),
and n, the number of sites:

(nv +1)−ne +n = 2. (7.1)

Moreover, every edge in the augmented graph has exactly two vertices, so if

we sum the degrees of all vertices we get twice the number of edges. Because

every vertex, including v∞, has degree at least three we get

2ne � 3(nv +1). (7.2)

Together with equation (7.1) this implies the theorem.

We close this section with a characterization of the edges and vertices of the

Voronoi diagram. We know that the edges are parts of bisectors of pairs of sites

and that the vertices are intersection points between these bisectors. There is

a quadratic number of bisectors, whereas the complexity of the Vor(P) is only

linear. Hence, not all bisectors define edges of Vor(P) and not all intersections

are vertices of Vor(P). To characterize which bisectors and intersections define

features of the Voronoi diagram we make the following definition. For a point

q we define the largest empty circle of q with respect to P, denoted by CP(q),
as the largest circle with q as its center that does not contain any site of P in

q

CP(q)

its interior. The following theorem characterizes the vertices and edges of the

Voronoi diagram.

Theorem 7.4 For the Voronoi diagram Vor(P) of a set of points P the following

holds:

(i) A point q is a vertex of Vor(P) if and only if its largest empty circle CP(q)
contains three or more sites on its boundary.

(ii) The bisector between sites pi and p j defines an edge of Vor(P) if and only

if there is a point q on the bisector such that CP(q) contains both pi and p j
on its boundary but no other site.150

Section 7.2
COMPUTING THE VORONOI DIAGRAM

Proof. (i) Suppose there is a point q such that CP(q) contains three or more sites

on its boundary. Let pi, p j, and pk be three of those sites. Since the interior

of CP(q) is empty q must be on the boundary of each of V(pi), V(p j), and

V(pk), and q must be a vertex of Vor(P).
On the other hand, every vertex q of Vor(P) is incident to at least three

edges and, hence, to at least three Voronoi cells V(pi), V(p j), and V(pk).
Vertex q must be equidistant to pi, p j, and pk and there cannot be another

site closer to q, since otherwise V(pi), V(p j), and V(pk) would not meet at q.

Hence, the interior of the circle with pi, p j, and pk on its boundary does not

contain any site.

(ii) Suppose there is a point q with the property stated in the theorem. Since

CP(q) does not contain any sites in its interior and pi and p j are on its

boundary, we have dist(q, pi) = dist(q, p j) � dist(q, pk) for all 1 � k � n.

It follows that q lies on an edge or vertex of Vor(P). The first part of the

theorem implies that q cannot be a vertex of Vor(P). Hence, q lies on an edge

of Vor(P), which is defined by the bisector of pi and p j.

Conversely, let the bisector of pi and p j define a Voronoi edge. The

largest empty circle of any point q in the interior of this edge must contain pi
and p j on its boundary and no other sites.

7.2 Computing the Voronoi Diagram

In the previous section we studied the structure of the Voronoi diagram. We

now set out to compute it. Observation 7.1 suggests a simple way to do this:

for each site pi, compute the common intersection of the half-planes h(pi, p j),
with j �= i, using the algorithm presented in Chapter 4. This way we spend

O(n logn) time per Voronoi cell, leading to an O(n2 logn) algorithm to compute

the whole Voronoi diagram. Can’t we do better? After all, the total complexity

of the Voronoi diagram is only linear. The answer is yes: the plane sweep

algorithm described below—commonly known as Fortune’s algorithm after

its inventor—computes the Voronoi diagram in O(n logn) time. You may be

tempted to look for an even faster algorithm, for example one that runs in linear

time. This turns out to be too much to ask: the problem of sorting n real numbers

is reducible to the problem of computing Voronoi diagrams, so any algorithm

for computing Voronoi diagrams must take Ω(n logn) time in the worst case.

Hence, Fortune’s algorithm is optimal.

The strategy in a plane sweep algorithm is to sweep a horizontal line—the

sweep line—from top to bottom over the plane. While the sweep is performed

information is maintained regarding the structure that one wants to compute.

More precisely, information is maintained about the intersection of the structure

with the sweep line. While the sweep line moves downwards the information

does not change, except at certain special points—the event points.

Let’s try to apply this general strategy to the computation of the Voronoi diagram

of a set P = {p1, p2, . . . , pn} of point sites in the plane. According to the plane 151

Chapter 7
VORONOI DIAGRAMS

sweep paradigm we move a horizontal sweep line � from top to bottom over

the plane. The paradigm involves maintaining the intersection of the Voronoi

diagram with the sweep line. Unfortunately this is not so easy, because the part

of Vor(P) above � depends not only on the sites that lie above � but also on sites

below �. Stated differently, when the sweep line reaches the topmost vertex

of the Voronoi cell V(pi) it has not yet encountered the corresponding site pi.

Hence, we do not have all the information needed to compute the vertex. We are

forced to apply the plane sweep paradigm in a slightly different fashion: instead

of maintaining the intersection of the Voronoi diagram with the sweep line, we

maintain information about the part of the Voronoi diagram of the sites above �
that cannot be changed by sites below �.

Denote the closed half-plane above � by �+. What is the part of the Voronoi

diagram above � that cannot be changed anymore? In other words, for which

points q ∈ �+ do we know for sure what their nearest site is? The distance of

�

a point q ∈ �+ to any site below � is greater than the distance of q to � itself.

Hence, the nearest site of q cannot lie below � if q is at least as near to some site

pi ∈ �+ as q is to �. The locus of points that are closer to some site pi ∈ �+ than

to � is bounded by a parabola. Hence, the locus of points that are closer to any

site above � than to � itself is bounded by parabolic arcs. We call this sequence

�

of parabolic arcs the beach line. Another way to visualize the beach line is the

following. Every site pi above the sweep line defines a complete parabola βi.

The beach line is the function that—for each x-coordinate—passes through the

lowest point of all parabolas.

Observation 7.5 The beach line is x-monotone, that is, every vertical line

intersects it in exactly one point.

It is easy to see that one parabola can contribute more than once to the beach

line. We’ll worry later about how many pieces there can be. Notice that the

breakpoints between the different parabolic arcs forming the beach line lie on

edges of the Voronoi diagram. This is not a coincidence: the breakpoints exactly

trace out the Voronoi diagram while the sweep line moves from top to bottom.

These properties of the beach line can be proved using elementary geometric

arguments.

So, instead of maintaining the intersection of Vor(P) with � we maintain

the beach line as we move our sweep line �. We do not maintain the beach line

explicitly, since it changes continuously as � moves. For the moment let’s ignore

the issue of how to represent the beach line until we understand where and how

its combinatorial structure changes. This happens when a new parabolic arc

appears on it, and when a parabolic arc shrinks to a point and disappears.

First we consider the events where a new arc appears on the beach line. One

occasion where this happens is when the sweep line � reaches a new site. The

parabola defined by this site is at first a degenerate parabola with zero width: a

vertical line segment connecting the new site to the beach line. As the sweep

line continues to move downward the new parabola gets wider and wider. The

part of the new parabola below the old beach line is now a part of the new beach152

Section 7.2
COMPUTING THE VORONOI DIAGRAM

line. Figure 7.2 illustrates this process. We call the event where a new site is

encountered a site event.

� � �
Figure 7.2
A new arc appears on the beach line

because a site is encountered

What happens to the Voronoi diagram at a site event? Recall that the

breakpoints on the beach line trace out the edges of the Voronoi diagram. At a

site event two new breakpoints appear, which start tracing out edges. In fact,

�

the new breakpoints coincide at first, and then move in opposite directions to

trace out the same edge. Initially, this edge is not connected to the rest of the

Voronoi diagram above the sweep line. Later on—we will see shortly exactly

when this will happen—the growing edge will run into another edge, and it

becomes connected to the rest of the diagram.

So now we understand what happens at a site event: a new arc appears on

the beach line, and a new edge of the Voronoi diagram starts to be traced out.

Is it possible that a new arc appears on the beach line in any other way? The

answer is no:

Lemma 7.6 The only way in which a new arc can appear on the beach line is

through a site event.

Proof. Suppose for a contradiction that an already existing parabola β j defined

by a site p j breaks through the beach line. There are two ways in which this

could happen.

The first possibility is that β j breaks through in the middle of an arc of a

parabola βi. The moment this is about to happen, βi and β j are tangent, that is,

�

β j

they have exactly one point of intersection. Let �y denote the y-coordinate of the

sweep line at the moment of tangency. If p j := (p j,x, p j,y), then the parabola β j
is given by

β j := y =
1

2(p j,y − �y)
(
x2 −2p j,xx+ p2

j,x + p2
j,y − �2

y
)
.

The formula for βi is similar, of course. Using that both p j,y and pi,y are larger

than �y, it is easy to show that it is impossible that βi and β j have only one point

of intersection. Hence, a parabola β j never breaks through in the middle of an

arc of another parabola βi.

�

β j

The second possibility is that β j appears in between two arcs. Let these

arcs be part of parabolas βi and βk. Let q be the intersection point of βi and

βk at which β j is about to appear on the beach line, and assume that βi is on

the beach line left of q and βk is on the beach line right of q, as in Figure 7.3.

Then there is a circle C that passes through pi, p j, and pk, the sites defining

the parabolas. This circle is also tangent to the sweep line �. The cyclic order 153

Chapter 7
VORONOI DIAGRAMS

on C, starting at the point of tangency with � and going clockwise, is pi, p j, pk,

because β j is assumed to appear in between the arcs of βi and βk. Consider an

infinitesimal motion of the sweep line downward while keeping the circle C
tangent to �; see Figure 7.3. Then C cannot have empty interior and still pass

Figure 7.3
The situation when β j would appear on

the beach line, and the circle when the

sweep line has proceeded

p j

pi

pk

q

βkβi

β j

�

C

p j

pi
pk

q

C

�

through p j: either pi or pk will penetrate the interior. Therefore, in a sufficiently

small neighborhood of q the parabola β j cannot appear on the beach line when

the sweep line moves downward, because either pi or pk will be closer to �
than p j.

An immediate consequence of the lemma is that the beach line consists of

at most 2n−1 parabolic arcs: each site encountered gives rise to one new arc

and the splitting of at most one existing arc into two, and there is no other way

an arc can appear on the beach line.

Figure 7.4
An arc disappears from the beach line

�

q

pi

p j

pk

�

α ′
α α ′′

p j

pkpi

�

p j

pkpi

q

The second type of event in the plane sweep algorithm is where an existing arc

of the beach line shrinks to a point and disappears, as in Figure 7.4. Let α ′
be the disappearing arc, and let α and α ′′ be the two neighboring arcs of α ′
before it disappears. The arcs α and α ′′ cannot be part of the same parabola;

this possibility can be excluded in the same way as the first possibility in the

proof of Lemma 7.6 was excluded. Hence, the three arcs α , α ′, and α ′′ are

defined by three distinct sites pi, p j, and pk. At the moment α ′ disappears, the

parabolas defined by these three sites pass through a common point q. Point

q is equidistant from � and each of the three sites. Hence, there is a circle

passing through pi, p j, and pk with q as its center and whose lowest point lies154

Section 7.2
COMPUTING THE VORONOI DIAGRAM

on �. There cannot be a site in the interior of this circle: such a site would be

closer to q than q is to �, contradicting the fact that q is on the beach line. It

follows that the point q is a vertex of the Voronoi diagram. This is not very

surprising, since we observed earlier that the breakpoints on the beach line trace

out the Voronoi diagram. So when an arc disappears from the beach line and

two breakpoints meet, two edges of the Voronoi diagram meet as well. We call

the event where the sweep line reaches the lowest point of a circle through three

sites defining consecutive arcs on the beach line a circle event. From the above

we can conclude the following lemma.

Lemma 7.7 The only way in which an existing arc can disappear from the beach

line is through a circle event.

Now we know where and how the combinatorial structure of the beach line

changes: at a site event a new arc appears, and at a circle event an existing

arc drops out. We also know how this relates to the Voronoi diagram under

construction: at a site event a new edge starts to grow, and at a circle event

two growing edges meet to form a vertex. It remains to find the right data

structures to maintain the necessary information during the sweep. Our goal

is to compute the Voronoi diagram, so we need a data structure that stores

the part of the Voronoi diagram computed thus far. We also need the two

‘standard’ data structures for any sweep line algorithm: an event queue and a

structure that represents the status of the sweep line. Here the latter structure is

a representation of the beach line. These data structures are implemented in the

following way.

We store the Voronoi diagram under construction in our usual data struc-

ture for subdivisions, the doubly-connected edge list. A Voronoi diagram,

however, is not a true subdivision as defined in Chapter 2: it has edges

that are half-lines or full lines, and these cannot be represented in a doubly-

connected edge list. During the construction this is not a problem, because

the representation of the beach line—described next—will make it possible

to access the relevant parts of the doubly-connected edge list efficiently

during its construction. But after the computation is finished we want to

have a valid doubly-connected edge list. To this end we add a big bounding

box to our scene, which is large enough so that it contains all vertices of

the Voronoi diagram. The final subdivision we compute will then be the

bounding box plus the part of the Voronoi diagram inside it.

The beach line is represented by a balanced binary search tree T; it is the

status structure. Its leaves correspond to the arcs of the beach line—which

is x-monotone—in an ordered manner: the leftmost leaf represents the

leftmost arc, the next leaf represents the second leftmost arc, and so on.

Each leaf µ stores the site that defines the arc it represents. The internal

nodes of T represent the breakpoints on the beach line. A breakpoint is

stored at an internal node by an ordered tuple of sites 〈pi, p j〉, where pi
defines the parabola left of the breakpoint and p j defines the parabola to the

right. Using this representation of the beach line, we can find in O(logn) 155

Chapter 7
VORONOI DIAGRAMS

time the arc of the beach line lying above a new site. At an internal node,

we simply compare the x-coordinate of the new site with the x-coordinate

of the breakpoint, which can be computed from the tuple of sites and the

position of the sweep line in constant time. Note that we do not explicitly

store the parabolas.

In T we also store pointers to the other two data structures used during

the sweep. Each leaf of T, representing an arc α , stores one pointer to a

node in the event queue, namely, the node that represents the circle event in

which α will disappear. This pointer is nil if no circle event exists where α
will disappear, or this circle event hasn’t been detected yet. Finally, every

internal node ν has a pointer to a half-edge in the doubly-connected edge

list of the Voronoi diagram. More precisely, ν has a pointer to one of the

half-edges of the edge being traced out by the breakpoint represented by ν .

The event queue Q is implemented as a priority queue, where the priority of

an event is its y-coordinate. It stores the upcoming events that are already

known. For a site event we simply store the site itself. For a circle event the

event point that we store is the lowest point of the circle, with a pointer to

the leaf in T that represents the arc that will disappear in the event.

All the site events are known in advance, but the circle events are not. This

brings us to one final issue that we must discuss, namely the detection of circle

events.

During the sweep the beach line changes its topological structure at every

event. This may cause new triples of consecutive arcs to appear on the beach

line and it may cause existing triples to disappear. Our algorithm will make sure

that for every three consecutive arcs on the beach line that define a potential

circle event, the potential event is stored in the event queue Q. There are two

subtleties involved in this. First of all, there can be consecutive triples whose

two breakpoints do not converge, that is, the directions in which they move are

such that they will not meet in the future; this happens when the breakpoints

move along two bisectors away from the intersection point. In this case the

triple does not define a potential circle event. Secondly, even if a triple has

converging breakpoints, the corresponding circle event need not take place: it

can happen that the triple disappears (for instance due to the appearance of a

new site on the beach line) before the event has taken place. In this case we call

the event a false alarm.

So what the algorithm does is this. At every event, it checks all the new

triples of consecutive arcs that appear. For instance, at a site event we can

get three new triples: one where the new arc is the left arc of the triple, one

where it is the middle arc, and one where it is the right arc. When such a new

triple has converging breakpoints, the event is inserted into the event queue Q.

Observe that in the case of a site event, the triple with the new arc being the

middle one can never cause a circle event, because the left and right arc of

the triple come from the same parabola and therefore the breakpoints must

diverge. Furthermore, for all disappearing triples it is checked whether they

have a corresponding event in Q. If so, the event is apparently a false alarm, and156

Section 7.2
COMPUTING THE VORONOI DIAGRAM

it is deleted from Q. This can easily be done using the pointers we have from

the leaves in T to the corresponding circle events in Q.

Lemma 7.8 Every Voronoi vertex is detected by means of a circle event.

Proof. For a Voronoi vertex q, let pi, p j, and pk be the three sites through which

a circle C(pi, p j, pk) passes with no sites in the interior. By Theorem 7.4, such a

circle and three sites indeed exist. For simplicity we only prove the case where

no other sites lie on C(pi, p j, pk), and the lowest point of C(pi, p j, pk) is not

one of the defining sites. Assume without loss of generality that from the lowest

point of C(pi, p j, pk), the clockwise traversal of C(pi, p j, pk) encounters the

sites pi, p j, pk in this order.

We must show that just before the sweep line reaches the lowest point of

C(pi, p j, pk), there are three consecutive arcs α , α ′ and α ′′ on the beach line

defined by the sites pi, p j, and pk. Only then will the circle event take place.

Consider the sweep line an infinitesimal amount before it reaches the lowest

point of C(pi, p j, pk). Since C(pi, p j, pk) doesn’t contain any other sites inside p j

pi

pk

C(pi, p j, pk)or on it, there exists a circle through pi and p j that is tangent to the sweep line,

and doesn’t contain sites in the interior. So there are adjacent arcs on the beach

line defined by pi and p j. Similarly, there are adjacent arcs on the beach line

defined by p j and pk. It is easy to see that the two arcs defined by p j are actually

the same arc, and it follows that there are three consecutive arcs on the beach

line defined by pi, p j, and pk. Therefore, the corresponding circle event is in Q

just before the event takes place, and the Voronoi vertex is detected.

We can now describe the plane sweep algorithm in detail. Notice that after

all events have been handled and the event queue Q is empty, the beach line

hasn’t disappeared yet. The breakpoints that are still present correspond to the

half-infinite edges of the Voronoi diagram. As stated earlier, a doubly-connected

edge list cannot represent half-infinite edges, so we must add a bounding box

to the scene to which these edges can be attached. The overall structure of the

algorithm is as follows.

Algorithm VORONOIDIAGRAM(P)

Input. A set P := {p1, . . . , pn} of point sites in the plane.

Output. The Voronoi diagram Vor(P) given inside a bounding box in a doubly-

connected edge list D.

1. Initialize the event queue Q with all site events, initialize an empty status

structure T and an empty doubly-connected edge list D.

2. while Q is not empty

3. do Remove the event with largest y-coordinate from Q.

4. if the event is a site event, occurring at site pi
5. then HANDLESITEEVENT(pi)
6. else HANDLECIRCLEEVENT(γ), where γ is the leaf of T repre-

senting the arc that will disappear

7. The internal nodes still present in T correspond to the half-infinite edges of

the Voronoi diagram. Compute a bounding box that contains all vertices of

the Voronoi diagram in its interior, and attach the half-infinite edges to the

bounding box by updating the doubly-connected edge list appropriately. 157

Chapter 7
VORONOI DIAGRAMS

8. Traverse the half-edges of the doubly-connected edge list to add the cell

records and the pointers to and from them.

The procedures to handle the events are defined as follows.

HANDLESITEEVENT(pi)

1. If T is empty, insert pi into it (so that T consists of a single leaf storing pi)

and return. Otherwise, continue with steps 2– 5.

2. Search in T for the arc α vertically above pi. If the leaf representing α has

a pointer to a circle event in Q, then this circle event is a false alarm and it

must be deleted from Q.

3. Replace the leaf of T that represents α with a subtree having three leaves.

The middle leaf stores the new site pi and the other two leaves store the site

p j that was originally stored with α . Store the tuples 〈p j, pi〉 and 〈pi, p j〉
representing the new breakpoints at the two new internal nodes. Perform

rebalancing operations on T if necessary.

4. Create new half-edge records in the Voronoi diagram structure for the

edge separating V(pi) and V(p j), which will be traced out by the two new

breakpoints.

5. Check the triple of consecutive arcs where the new arc for pi is the left arc

to see if the breakpoints converge. If so, insert the circle event into Q and

add pointers between the node in T and the node in Q. Do the same for the

triple where the new arc is the right arc.

HANDLECIRCLEEVENT(γ)

1. Delete the leaf γ that represents the disappearing arc α from T. Update

the tuples representing the breakpoints at the internal nodes. Perform

rebalancing operations on T if necessary. Delete all circle events involving

α from Q; these can be found using the pointers from the predecessor and

the successor of γ in T. (The circle event where α is the middle arc is

currently being handled, and has already been deleted from Q.)

2. Add the center of the circle causing the event as a vertex record to the

doubly-connected edge list D storing the Voronoi diagram under construc-

tion. Create two half-edge records corresponding to the new breakpoint

of the beach line. Set the pointers between them appropriately. Attach the

three new records to the half-edge records that end at the vertex.

3. Check the new triple of consecutive arcs that has the former left neighbor

of α as its middle arc to see if the two breakpoints of the triple converge.

If so, insert the corresponding circle event into Q. and set pointers between

the new circle event in Q and the corresponding leaf of T. Do the same for

the triple where the former right neighbor is the middle arc.

Lemma 7.9 The algorithm runs in O(n logn) time and it uses O(n) storage.

Proof. The primitive operations on the tree T and the event queue Q, such

as inserting or deleting an element, take O(logn) time each. The primitive

operations on the doubly-connected edge list take constant time. To handle

an event we do a constant number of such primitive operations, so we spend158

Section 7.2
COMPUTING THE VORONOI DIAGRAM

O(logn) time to process an event. Obviously, there are n site events. As for

the number of circle events, we observe that every such event that is processed

defines a vertex of Vor(P). Note that false alarms are deleted from Q before

they are processed. They are created and deleted while processing another, real

event, and the time we spend on them is subsumed under the time we spend to

process this event. Hence, the number of circle events that we process is at most

2n−5. The time and storage bounds follow.

Before we state the final result of this section we should say a few words about

degenerate cases.

The algorithm handles the events from top to bottom, so there is a degeneracy

when two or more events lie on a common horizontal line. This happens, for

example, when there are two sites with the same y-coordinate. These events can

be handled in any order when their x-coordinates are distinct, so we can break

ties between events with the same y-coordinate but with different x-coordinates

arbitrarily. However, if this happens right at the start of the algorithm, that is,

if the second site event has the same y-coordinate as the first site event, then

special code is needed because there is no arc above the second site yet. Now

zero-length edge

suppose there are event points that coincide. For instance, there will be several

coincident circle events when there are four or more co-circular sites, such that

the interior of the circle through them is empty. The center of this circle is a

vertex of the Voronoi diagram. The degree of this vertex is at least four. We

could write special code to handle such degenerate cases, but there is no need to

do so. What will happen if we let the algorithm handle these events in arbitrary

order? Instead of producing a vertex with degree four, it will just produce two

vertices with degree three at the same location, with a zero length edge between

them. These degenerate edges can be removed in a post-processing step, if

required.

Besides these degeneracies in choosing the order of the events we may also

encounter degeneracies while handling an event. This occurs when a site pi that

we process happens to be located exactly below the breakpoint between two arcs

on the beach line. In this case the algorithm splits either of these two arcs and

inserts the arc for pi in between the two pieces, one of which has zero length.

This piece of zero length now is the middle arc of a triple that defines a circle

event. The lowest point of this circle coincides with pi. The algorithm inserts

this circle event into the event queue Q, because there are three consecutive arcs

on the beach line that define it. When this circle event is handled, a vertex of

the Voronoi diagram is correctly created and the zero length arc can be deleted

later. Another degeneracy occurs when three consecutive arcs on the beach line

are defined by three collinear sites. Then these sites don’t define a circle, nor a

circle event.

We conclude that the above algorithm handles degenerate cases correctly.

Theorem 7.10 The Voronoi diagram of a set of n point sites in the plane can be

computed with a sweep line algorithm in O(n logn) time using O(n) storage. 159

Chapter 7
VORONOI DIAGRAMS

7.3 Voronoi Diagrams of Line Segments

The Voronoi diagram can also be defined for objects other than points. The

distance from a point in the plane to an object is then measured to the closest

point on the object. Whereas the bisector of two points is simply a line, the

bisector of two disjoint line segments has a more complex shape. It consists of

up to seven parts, where each part is either a line segment or a parabolic arc.

Parabolic arcs occur if the closest point of one line segment is an endpoint and

the closest point of the other line segment is in its interior. In all other cases the

bisector part is straight. Although bisectors and therefore the Voronoi diagram

are somewhat more complex, the number of vertices, edges, and faces in the

Voronoi diagram of n disjoint line segments is still only O(n).
Assume for a moment that we allow the line segments to be non-crossing,

that is, we allow them to share endpoints. Then a whole region of the plane can

be equally close to two line segments via their common endpoint, and bisectors

are not even curves anymore. To avoid the complications that arise in defining

and computing Voronoi diagrams of line segments that share endpoints, we

will simply assume here that all line segments are strictly disjoint. In many

applications we can simply shorten the line segments very slightly to obtain

disjoint line segments.

The sweep line algorithm for points can be adapted to the case of line

segment sites. Let S = {s1, . . . ,sn} be a set of n disjoint line segments. We

call the segments of S sites as before, and use the terms site endpoint and site
interior in the following description.

Figure 7.5
The beach line for a set of line segment

sites. The breakpoints trace the dashed

arcs, which include the Voronoi edges

�

s1

s2

s3
s4

s5

Recall that our algorithm for point sites maintained a beach line: a piecewise

parabolic x-monotone curve such that, for points on the curve, the distance to

the closest site above the sweep line is equal to the distance to the sweep line.

What does the beach line look like when the sites are segments? First we note

that a line segment site may be partially above and partially below the sweep

line. When defining the beach line, we consider only those parts of the sites that

are above the sweep line. Hence, for a given position of the sweep line �, the

beach line consists of those points such that the distance to the closest portion

of a site above � is equal to the distance to �. This means that the beach line

now consists of parabolic arcs and straight line segments. A parabolic arc arises

when that part of the beach line is closest to a site endpoint, and a straight line

segment arises when that part of the beach line is closest to a site interior. Note

that if a site interior intersects �, then the beach line will have two straight line

segments ending at the intersection—see site s2 in Figure 7.5.160

Section 7.3
VORONOI DIAGRAMS OF LINE

SEGMENTS

The breakpoints between parabolic arcs and straight segments on the beach

line arise in several different ways. Figure 7.5 illustrates this. Assume any

position � of the sweep line during the downward sweep to analyze the types of

breakpoint:

If a point p is closest to two site endpoints while being equidistant from

them and �, then p is a breakpoint that traces a line segment (as in the point

site case).

If a point p is closest to two site interiors while being equidistant from them

and �, then p is a breakpoint that traces a line segment.

If a point p is closest to a site endpoint and a site interior of different sites

while being equidistant from them and �, then p is a breakpoint that traces a

parabolic arc.

If a point p is closest to a site endpoint, the shortest distance is realized by a

segment that is perpendicular to the line segment site, and p has the same

distance from �, then p is a breakpoint that traces a line segment.

If a site interior intersects the sweep line, then the intersection is a breakpoint

that traces a line segment (the site interior).

In the fourth and fifth cases, the breakpoint does not actually trace an arc of the

Voronoi diagram, because only one site is involved. For the proper operation of

the algorithm, dealing with such breakpoints and corresponding events is still

necessary.

As in the sweep line algorithm for point sites, we again have site events and

�

circle events. A site event occurs when the sweep line reaches a site endpoint.

Obviously, site events at upper endpoints should be handled differently from

site events at lower endpoints. At an upper endpoint, an arc of the beach line is

split into two, and in between, four new arcs appear. The breakpoints between

these four arcs are of the last two types. At a lower endpoint, the breakpoint

that is the intersection of the site interior with the sweep line is replaced by two

breakpoints of the fourth type, with a parabolic arc in between (for the newly

discovered site endpoint).

Similarly, there are several types of circle event. They all correspond to the

disappearance of an arc of the beach line, and they occur when the sweep line

reaches the bottom of an empty circle that is defined by two or three sites above

the sweep line. The centers of these empty circles are at locations where two

consecutive breakpoints will meet. Depending on the types of the breakpoints

that meet, several different cases can be distinguished and handled. If the two

breakpoints are of any of the first three types, then three sites are involved. If

one of the breakpoints is of the fourth type, then only two sites are involved.

Breakpoints of the fifth type cannot be involved for disjoint line segments.

Notice that the Voronoi diagram that the algorithm computes is a subdivision

with straight edges and parabolic arcs. Can we store this type of subdivision in

a doubly-connected edge list? This is indeed possible, and the structure need

not even be adapted. With each face, we store the corresponding site, so for any 161

Chapter 7
VORONOI DIAGRAMS

half-edge�e we can determine the two sites that have e on their bisector (using

IncidentFace(�e) and IncidentFace(Twin(�e))). Since we can also easily find the

two vertices between which the edge lies (Origin(�e) and Origin(Twin(�e))), we

can determine the shape of any edge in constant time.

The whole sweep line algorithm is now just an extension of the one for point

sites, with more cases to be distinguished and handled. However, the algorithm

still has only O(n) events, and each can be handled in O(logn) time.

Theorem 7.11 The Voronoi diagram of a set of n disjoint line segment sites can

be computed in O(n logn) time using O(n) storage.

One of the applications of the Voronoi diagram for line segments is in

motion planning (covered more extensively in Chapter 13). Assume that a set

of obstacles is given, consisting of n line segments in total, and that we have

a robot R. We assume that the robot can move freely in all directions, and is

approximated well by an enclosing disc D. Suppose that we wish to find a

collision-free motion from one location of the robot to another, or to decide that

none exists.

One motion-planning technique is called retraction. The idea of retraction is

that the arcs of the Voronoi diagram define the middle between the line segments,

and therefore define a path with the most clearance. So a path over the arcs

of the Voronoi diagram is the best option for a collision-free path. Figure 7.6

shows a set of line segments inside a rectangle, together with a Voronoi diagram

of the line segments and the sides of the rectangle.

Figure 7.6
Voronoi diagram of line segments, and

start and end positions of a disc

pstartpend

We can determine a collision-free path between two disc positions amidst a

set of line segments with the following algorithm.162

Section 7.4
FARTHEST-POINT VORONOI

DIAGRAMS

Algorithm RETRACTION(S,qstart,qend,r)

Input. A set S := {s1, . . . ,sn} of disjoint line segments in the plane, and two

discs Dstart and Dend centered at qstart and qend with radius r. The two disc

positions do not intersect any line segment of S.

Output. A path that connects qstart to qend such that no disc of radius r with its

center on the path intersects any line segment of S. If no such path exists, this

is reported.

1. Compute the Voronoi diagram Vor(S) of S inside a sufficiently large bound-

ing box.

2. Locate the cells of Vor(P) that contain qstart and qend.

3. Determine the point pstart on Vor(S) by moving qstart away from the nearest

line segment in S. Similarly, determine the point pend on Vor(S) by moving

qend away from the nearest line segment in S. Add pstart and pend as vertices

to Vor(S), splitting the arcs on which they lie into two.

4. Let G be the graph corresponding to the vertices and edges of the Voronoi

diagram. Remove all edges from G for which the smallest distance to the

nearest sites is smaller than or equal to r.

5. Determine with depth-first search whether a path exists from pstart to pend

in G. If so, report the line segment from qstart to pstart, the path in G from

pstart to pend, and the line segment from pend to qend as the path. Otherwise,

report that no path exists.

The line segment connecting qstart to pstart cannot give a collision, because the

disc only moves further away from the nearest obstacle. Similarly, the line

segment between pend and qend is collision-free. For any two discs centered on

the Voronoi diagram, a collision-free path between them exists on the Voronoi

diagram if and only if such a path exists at all. Hence, for a disc-shaped robot, a

path is found if one exists.

Theorem 7.12 Given n disjoint line segment obstacles and a disc-shaped robot,

the existence of a collision-free path between two positions of the robot can be

determined in O(n logn) time using O(n) storage.

7.4 Farthest-Point Voronoi Diagrams

We now continue with a different application where Voronoi diagrams are

needed. When objects are manufactured, slight deviations in the shapes of

the objects will occur. When the objects need to be perfectly round, the man-

ufactured objects are tested for their roundness. This is done by coordinate
measurement machines, which sample points on the surface of the object. As-

sume that we have constructed a disc, and wish to determine its roundness. The

machine gives us a set P of points in the plane that lie nearly on a circle. The

roundness of a set of points is defined as the width of the smallest-width annulus

that contains the points. An annulus is the region between two concentric circles,

and its width is the difference between the radii of those circles.

The smallest-width annulus must of course have some points of the set P on

its bounding circles. Let us call the outer circle Couter and the inner circle Cinner. 163

Chapter 7
VORONOI DIAGRAMS

Clearly, there must be at least one point on Couter, otherwise we can reduce the

size of Couter, and at least one point on Cinner, otherwise we can increase the size

of Cinner. But one point on each bounding circle cannot give us a smallest-width

annulus yet. There appear to be three different cases, each with a total of four

points on the two circles (Figure 7.7):

Couter contains at least three points of P, and Cinner contains at least one

point of P.

Couter contains at least one point of P, and Cinner contains at least three points

of P.

Couter and Cinner both contain two points of P.

Figure 7.7
Three cases of the smallest-width

annulus

If Cinner or Couter contains fewer points than listed in any of these cases, then

we can always find an annulus with a smaller width. The problem of finding the

smallest-width annulus enclosing a given point set looks similar to the problem

of finding the smallest disc enclosing a point set, studied in Section 4.7. The

technique we used for the smallest-disc problem, however, does not work for

the smallest-width annulus: the property that an added point that does not lie in

the optimal annulus so far must always lie on the boundary of the new optimal

annulus does not hold.

Finding the smallest-width annulus is equivalent to finding its center point.

Once the center point—let’s call it q—is fixed, the annulus is determined by

the points of P that are closest to and farthest from q. If we have the Voronoi

diagram of P, then the closest point is the one in whose cell q lies. It turns out

that a similar structure exists for the farthest point, namely the farthest-point
Voronoi diagram. This divides the plane into cells in which the same point

of P is the farthest point. The farthest-point Voronoi cell of a point pi is the

intersection of n−1 half-planes, just as for a standard Voronoi cell, but we take

the “other sides” of the bisectors, the sides where pi is farther away. Hence, all

pi cell of pi

p j

cell of p j

cells of the farthest-point Voronoi diagram are convex. Not every point of P has

a cell in the farthest-point Voronoi diagram: the intersections of the half-planes

can be empty. It is not hard to see that for any point in the plane, its farthest

point in the set P must be a point that lies on the convex hull of P. Therefore,

a point that lies inside the convex hull cannot have a cell in the farthest-point

Voronoi diagram.

Observation 7.13 Given a set P of points in the plane, a point of P has a cell in

the farthest-point Voronoi diagram if and only if it is a vertex of the convex hull

of P.164

Section 7.4
FARTHEST-POINT VORONOI

DIAGRAMS

We can prove more properties of the farthest-point Voronoi diagram. Sup-

pose that a point pi ∈ P lies on the convex hull, and let q be some point in

the plane for which pi is the farthest point. Let �(pi,q) be the line through pi

pi

q

and q. Then all points on the half-line starting at q, contained in �(pi,q), and

not containing pi, must also be in the farthest-point Voronoi cell of pi. This

implies that all cells are unbounded. The vertices and edges of the farthest-point

Voronoi diagram form a tree-like structure (in the graph sense), because the

diagram is connected and does not have cycles. A cycle would imply a bounded

cell.

We can show that the farthest-point Voronoi diagram of n points has O(n)
vertices, edges, and cells (see also Exercise 7.14). There is another interesting

property: the center of the smallest enclosing disc (see Section 4.7) is either

a vertex of the farthest-point Voronoi diagram or the midpoint of two sites

defining an edge of the farthest-point Voronoi diagram. In the former case, there

are three equidistant farthest points, and in the latter case, two. Clearly, the

center of the smallest enclosing disc cannot have just one point that is farthest

from it.

Since the farthest-point Voronoi diagram has half-infinite edges, we cannot

store it in a doubly-connected edge list, but we can adapt the structure slightly

to deal with such subdivisions. We use a special vertex-like record as the origin

of each half-edge that has no real vertex as its origin. These new records store

the direction of the half-infinite edge instead of coordinates. Furthermore, half-

edge records corresonding to half-infinite edges have either Next(�e) or Prev(�e)
undefined. We shall still use the term “doubly-connected edge list” for this

adapted version.

We now present an algorithm to compute the farthest-point Voronoi diagram

of a set P of n points in the plane. First, we compute the convex hull of P, take

its vertices, and put them in random order. Let this random order be p1, . . . , ph.

We remove the points ph, . . . , p4 one by one from the cyclic order, and when

removing pi, store its clockwise neighbor cw(pi) and counterclockwise neighbor

ccw(pi) at the time of removal. After a point has been removed, it cannot be

the clockwise or counterclockwise neighbor anymore of points removed later.

pi

cw(pi)ccw(pi)

pi

cw(pi)ccw(pi)

ccw(pi)

cw(pi) cell of pi

cell of

cell of

cw(pi)
cell of

ccw(pi)
cell of

Figure 7.8
Addition of a point pi to the

farthest-point Voronoi diagram of

p1, . . . , pi−1

We compute the farthest-point Voronoi diagram of p1, p2, p3 to initialize 165

Chapter 7
VORONOI DIAGRAMS

the incremental construction. Then we insert the remaining points p4, . . . , ph
while constructing the farthest-point Voronoi diagram. To be able to add the

farthest-point Voronoi cell of pi efficiently, given the farthest-point Voronoi

diagram of {p1, . . . , pi−1}, we maintain a pointer for each point p j, 1 � j < i,
to the half-infinite half-edge of the doubly-connected edge list that is most

p j
cell of p j

counterclockwise in a traversal of the boundary of the farthest-point Voronoi

cell of p j.

We now look at the addition of the cell of pi in more detail, see Figure 7.8.

The cell will come “in between” the cells of cw(pi) and ccw(pi). Just before

pi is added, cw(pi) and ccw(pi) are each other’s neighbors on the convex hull

of {p1, . . . , pi−1}, so their cells are separated by a half-infinite edge that is part

of their bisector. The point ccw(pi) has a pointer to this edge. The bisector

of pi and ccw(pi) will give a new half-infinite edge that lies in the farthest-

point Voronoi cell of ccw(pi), and is part of the boundary of the farthest-point

Voronoi cell of pi. We traverse the cell of ccw(pi) in the clockwise direction

to see which edge the bisector intersects. On the other side of this edge is

the farthest-point Voronoi cell of another point p j from {p1, . . . , pi−1}, and the

bisector of p j and pi will also give an edge of the farthest-point Voronoi cell

of pi. We again traverse the cell of p j in the clockwise direction to determine

where the other insertion of the cell boundary and the bisector is located. By

tracing cell boundaries in clockwise order, we trace the farthest-point Voronoi

cell in counterclockwise order. The last bisector that we will find is with cw(pi),
and it will give a new half-infinite edge in the farthest-point Voronoi diagram.

All new edges found are added to the doubly-connected edge list representation,

after which all edges that lie inside the farthest-point Voronoi cell of pi are

removed. They are no longer valid edges of the farthest-point Voronoi diagram

of {p1, . . . , pi}.

In short, the insertion of the next farthest-point Voronoi cell is done by

tracing the new cell with the help of the existing diagram, adding the new edges,

and removing the edges that have become obsolete.

Theorem 7.14 Given a set of n points in the plane, its farthest-point Voronoi

diagram can be computed in O(n logn) expected time using O(n) storage.

Proof. It takes O(n logn) time to compute the h points on the convex hull in

counterclockwise order. The farthest-point Voronoi diagram actually takes only

O(h) expected time to construct after we have the points on the convex hull

in sorted order. To see this, we apply backwards analysis. We consider the

situation after the insertion of the cell of pi. We observe that if the cell of pi has

k edges on its boundary, then the traversal performed to trace this cell visited

k cells in the farthest-point Voronoi diagram of {p1, . . . , pi−1}, and visited at

most 4k−6 boundary edges of these cells in total.

The farthest-point Voronoi diagram of {p1, . . . , pi} has at most 2i−3 edges

(see Exercise 7.14), each used by two cells. Since every point of {p1, . . . , pi}
has the same probability of having been the last one added, the expected size

of the cell of pi is less than four. Hence, the expected time needed for each

insertion is O(1), and the algorithm runs in O(h) expected time.166

Section 7.5
NOTES AND COMMENTS

Now we return to the problem of computing the smallest-width annulus.

Suppose that the smallest-width annulus is such that Cinner contains at least three

points of P. Then its center is a vertex of the normal Voronoi diagram of P.

Similarly, if the smallest-width annulus is such that Couter contains at least three

points of P, its center is a vertex of the farthest-point Voronoi diagram of P.

Finally, if the smallest-width annulus is such that Cinner and Couter both contain

two points of P, then its center must lie on an edge of the Voronoi diagram and

on an edge of the farthest-point Voronoi diagram simultaneously. This means

that we can obtain a reasonably small set of points that must contain the center

of a smallest-width annulus.

To do this, we generate the vertices of the overlay of the Voronoi diagram

and the farthest-point Voronoi diagram. The vertices of the overlay are exactly

the candidate centers of the smallest-width annulus, covering all three cases. We

don’t really need to compute the overlay itself. Once we know a vertex and the

four points that determine Cinner and Couter, we can compute the smallest-width

annulus of those four points directly in O(1) time. This is a candidate for the

smallest-width annulus.

The whole algorithm to compute the smallest-width annulus of a set P of n
points in the plane is as follows. Compute the Voronoi diagram and the farthest-

point Voronoi diagram of P. For each vertex of the farthest-point Voronoi

diagram, determine the point of P that is closest. For each vertex of the normal

Voronoi diagram, determine the point of P that is farthest. This gives us O(n)
sets of four points that define the candidate annuli in the first and second cases.

Next, for every pair of edges, one from each of the diagrams, test if they intersect.

If so, we have another set of four points that forms a candidate annulus. For

all candidates of all three types, choose the one that gives the smallest-width

annulus as the solution.

Theorem 7.15 Given a set P of n points in the plane, the smallest-width annulus

(and the roundness) can be determined in O(n2) time using O(n) storage.

7.5 Notes and Comments

Although it is beyond the scope of this book to give an extensive survey of

the history of Voronoi diagrams it is appropriate to make a few historical

remarks. Voronoi diagrams are often attributed to Dirichlet [148]—hence the

name Dirichlet tessellations that is sometimes used—and Voronoi [379, 380].

They can be found in Descartes’s treatment of cosmic fragmentation in Part

III of his Principia Philosophiae, published in 1644. In the twentieth century,

the Voronoi diagram was rediscovered several times. In biology this even

happened twice in a very short period. In 1965 Brown [75] studied the intensity

of trees in a forest. He defined the area potentially available to a tree, which

was in fact the Voronoi cell of that tree. One year later Mead [272] used the

same concept for plants, calling the Voronoi cells plant polygons. Now, there

is an impressive amount of literature concerning Voronoi diagrams and their

applications in all kinds of research areas. The book by Okabe et al. [297] 167

Chapter 7
VORONOI DIAGRAMS

contains an ample treatment of Voronoi diagrams and their applications. We

confine ourselves in this section to a discussion of the various aspects of Voronoi

diagrams encountered in the computational geometry literature.

In this chapter we have proved some properties of the Voronoi diagram, but it

has many more. For example, if one connects all the pairs of sites whose Voronoi

cells are adjacent then the resulting set of segments forms a triangulation of the

point set, called the Delaunay triangulation. This triangulation, which has some

very nice properties, is the topic of Chapter 9.

There is a beautiful connection between Voronoi diagrams and convex

polyhedra. Consider the transformation that maps a point p = (px, py) in E
2 to

the non-vertical plane h(p) : z = 2pxx+2pyy− (p2
x + p2

y) in E
3. Geometrically,

z = x2 + y2

(px, py,0)

h(p) is the plane that is tangent to the unit paraboloid U : z = x2 +y2 at the point

vertically above (px, py,0). For a set P of point sites in the plane, let H(P) be

the set of planes that are the images of the sites in P. Now consider the convex

polyhedron P that is the intersection of all positive half-spaces defined by the

planes in H(P), that is, P :=
⋂

h∈H(P) h+, where h+ denotes the half-space above

h. Surprisingly, if we project the edges and vertices of the polyhedron vertically

downwards onto the xy-plane, we get the Voronoi diagram of P [167]. See

Chapter 11 for a more extensive description of this transformation. A similar

transformation exists for the farthest-point Voronoi diagram.

We have studied Voronoi diagrams in their most basic setting, namely for a set

of point sites in the Euclidean plane. The first optimal O(n logn) time algorithm

for this case was a divide-and-conquer algorithm presented by Shamos and

Hoey [350]; since then, many other optimal algorithms have been developed.

The plane sweep algorithm that we described is due to Fortune [183]. Fortune’s

original description of the algorithm is a little different from ours, which follows

the interpretation of the algorithm given by Guibas and Stolfi [203].

Voronoi diagrams can be generalized in many ways [28, 297]. One generaliza-

tion is to point sets in higher-dimensional spaces. In E
d , the maximum combina-

torial complexity of the Voronoi diagram of a set of n point sites (the maximum

number of vertices, edges, and so on, of the diagram) is Θ(n�d/2�) [239] and it

can be computed in O(n logn + n�d/2�) optimal time [93, 133, 346]. The fact

that the dual of the Voronoi diagram is a triangulation of the set of sites, and

the connection between Voronoi diagrams and convex polyhedra as discussed

above still hold in higher dimensions.

Another generalization concerns the metric that is used. In the L1-metric, or

Manhattan metric, the distance between two points p and q is defined as

dist1(p,q) := |px −qx|+ |py −qy| ,
the sum of the absolute differences in the x- and y-coordinates. In a Voronoi

diagram in the L1-metric, all edges are horizontal, vertical, or diagonal (at an

angle of 45◦ to the coordinate axes). In the more general Lp-metric, the distance

between two points p and q is defined as

distp(p,q) := p
√

|px −qx|p + |py −qy|p .168

Section 7.5
NOTES AND COMMENTS

Note that the L2-metric is simply the Euclidean metric. There are several papers

dealing with Voronoi diagrams in these metrics [118, 248, 252]. One can also

define a distance function by assigning a weight to each site. Now the distance

from a site to a point is the Euclidean distance to the point, plus its additive

weight. The resulting diagrams are called weighted Voronoi diagrams [183].

The weight can also be used to define the distance from a site to a point as the

Euclidean distance times the weight. Diagrams based on this multiplicatively

weighted distance are also called weighted Voronoi diagrams [29]. Power

diagrams [25, 26, 27, 30] are another generalization of Voronoi diagrams where

a different distance function is used. It is even possible to drop the distance

function altogether and define the Voronoi diagram in terms only of bisectors

between pairs of sites. Such diagrams are called abstract Voronoi diagrams [240,

241, 242, 274].

Other generalizations concern the shape of the sites. We have seen the Voronoi

diagram of a set of disjoint line segments in this chapter. We discussed the

application of this diagram to motion planning using the retraction technique;

Chapter 13 discusses motion planning in general.

An important special case of the Voronoi diagram of line segments is the

Voronoi diagram of the edges of a simple polygon, interior to the polygon itself.

Since the edges share endpoints, there can be whole regions inside the polygon

where two edges are equally close. This occurs at every reflex vertex of the

polygon. The Voronoi diagram is the subdivision of the interior of the polygon

into faces where one or two edges are the closest. This Voronoi diagram is

also known as the medial axis or skeleton, and it has applications in shape

analysis [366, 377]. The medial axis can be computed in time linear in the

number of edges of the polygon [123].

Instead of partitioning the space into regions according to the closest sites,

one can also partition it according to the k closest sites, for some 1 � k � n−1.

The diagrams obtained in this way are called higher-order Voronoi diagrams,

and, for given k, the diagram is called the order-k Voronoi diagram [6, 31, 70, 98].

Note that the order-1 Voronoi diagram is nothing more than the standard Voronoi

diagram. The order-(n − 1) Voronoi diagram is the farthest-point Voronoi

diagram, because the Voronoi cell of a point pi is now the region of points for

which pi is the farthest site. The maximum complexity of the order-k Voronoi

diagram of a set of n point sites in the plane is Θ(k(n− k)) [249]. Currently

the best known algorithms for computing the order-k Voronoi diagram run in

O(n log3 n+nk) time [6] and in O(n logn+nk2c log∗ k) time [326], where c is a

constant.

The farthest-point Voronoi diagram takes O(n logn) time to compute, but if

the points are in convex position and are given in the order along the convex

hull, then there exists a simple O(n) expected-time algorithm [116], given in

this chapter, and also an O(n) time deterministic algorithm [11]. Testing the

roundness of an object or set of points is a problem that arises in metrology,

the science of measurement. Several definitions of roundness exist, the one

used in this chapter being the most widely accepted one. A quadratic-time 169

Chapter 7
VORONOI DIAGRAMS

algorithm for the roundness problem was given by Ebarra et al. [155]. A com-

plex, subquadratic-time algorithm was suggested by Agarwal and Sharir [9]. In

special cases that correspond to point sets that may occur in practice, linear-time

or near-linear-time algorithms exist [52, 142, 187]. A survey of computational

metrology has been given by Yap and Chang [396].

7.6 Exercises

7.1 Prove that for any n > 3 there is a set of n point sites in the plane such

that one of the cells of Vor(P) has n−1 vertices.

7.2 Show that Theorem 7.3 implies that the average number of vertices of a

Voronoi cell is less than six.

7.3 Show that Ω(n logn) is a lower bound for computing Voronoi diagrams

by reducing the sorting problem to the problem of computing Voronoi

diagrams. You can assume that the Voronoi diagram algorithm should

be able to compute for every vertex of the Voronoi diagram its incident

edges in cyclic order around the vertex.

7.4 Prove that the breakpoints of the beach line, as defined in Section 7.2,

trace out the edges of the Voronoi diagram while the sweep line moves

from top to bottom.

7.5 Give an example where the parabola defined by some site pi contributes

more than one arc to the beach line. Can you give an example where it

contributes a linear number of arcs?

7.6 Give an example of six sites such that the plane sweep algorithm encoun-

ters the six site events before any of the circle events. The sites should lie

in general position: no three sites on a line and no four sites on a circle.

7.7 Do the breakpoints of the beach line always move downwards when the

sweep line moves downwards? Prove this or give a counterexample.

7.8 Write a procedure to compute a big enough bounding box from the

incomplete doubly-connected edge list and the tree T after the sweep is

completed. The box should contain all sites and all Voronoi vertices.

7.9 Write a procedure to add all cell records and the corresponding pointers

to the incomplete doubly-connected edge list after the bounding box has

been added. That is, fill in the details of line 8 of Algorithm VORONOIDI-

AGRAM.

7.10 Let P be a set of n points in the plane. Give an O(n logn) time algorithm

to find two points in P that are closest together. Show that your algorithm

is correct.170

Section 7.6
EXERCISES

7.11 Let P be a set of n points in the plane. Give an O(n logn) time algorithm

to find for each point p in P another point in P that is closest to it.

7.12 Let the Voronoi diagram of a point set P be stored in a doubly-connected

edge list inside a bounding box. Give an algorithm to compute all points

of P that lie on the boundary of the convex hull of P in time linear in the

output size. Assume that your algorithm receives as its input a pointer to

the record of some half-edge whose origin lies on the bounding box.

7.13 For each of the ten breakpoints shown in Figure 7.5, determine which of

the five types it corresponds to.

7.14 Show that the farthest point Voronoi diagram on n points in the plane

has at most 2n− 3 (bounded or unbounded) edges. Also give an exact

bound on the maximum number of vertices in the farthest point Voronoi

diagram.

7.15 Show that the smallest width annulus cannot be constructed with ran-

domized incremental construction. To this end, show that a point pi
can be added to a set Pi−1 that does not lie in the minimum width annu-

lus, but does not lie on the boundary of the smallest width annulus of

Pi := Pi−1 ∩{pi}.

7.16 Show that for some set P of n points, there can be Ω(n2) intersections

between the edges of the Voronoi diagram and the farthest site Voronoi

diagram.

7.17 Show that if there are only O(n) intersections between the edges of the

Voronoi diagram and the farthest site Voronoi diagram, then the smallest

width annulus can be computed in O(n logn) expected time.

7.18* In the Voronoi assignment model the goods or services that the consumers

want to acquire have the same market price at every site. Suppose this is

not the case, and that the price of the good at site pi is wi. The trading areas

of the sites now correspond to the cells in the weighted Voronoi diagram

of the sites (see Section 7.5), where site pi has an additive weight wi.

Generalize the sweep line algorithm of Section 7.2 to this case.

7.19* Suppose that we are given a subdivision of the plane into n convex regions.

We suspect that this subdivision is a Voronoi diagram, but we do not know

the sites. Develop an algorithm that finds a set of n point sites whose

Voronoi diagram is exactly the given subdivision, if such a set exists.

171

